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1
DETECTING CHANGE POINTS IN DATA
STREAMS

TECHNICAL FIELD

The present invention relates to analysis of computerized
data streams in general, and in particular to a computerized
method for detecting change points in data streams.

BACKGROUND ART

Modern computing technology enables to gather and pro-
cess large quantities of data in a variety of fields such as
finance, commerce, operations etc. In some cases, efficient
and quick analysis of such high speed data streams can be
very valuable in order to detect a change in trends or condition
as early as possible. Click-through stream mining in e-com-
merce, where the goal of the application is to predict shopping
behavior or the effect of advertising, is one notable example.
Additional examples of high speed data streams include com-
puterized production environment monitoring applications
whose goal is failure detection, traffic monitoring applica-
tions that give driving recommendations or on-line alerts, and
power grid applications for detecting changes in load profiles
and forecast. In all those scenarios analysis is best done
on-line, at the speed at which the data is arriving, as a delay in
analysis would often translate into a delayed response which
can be costly.

In almost each of these scenarios, the data streams are
affected in one way or another by human behavior, which
itself changes in response to the physical world (time of day
or season), fashion, fads, psychological reasons, action by
trendsetters, current events, or the economy. Any data stream
analysis algorithm must therefore take into account and
respond to the non-stationary nature of data distribution.

Furthermore, in many application domains, the change in
the underlying distribution of the data is the most interesting
event of all. In e-commerce, it can be the result of a change in
the competitive scenario. In computerized environment
monitoring, it can signal the spread of a new type of failure—
such as a new computer virus. Lastly, in stock trading it may
signal the move from a bull to a bear market or vice versa.
Changes in the mechanism which generates the data are
denoted concept drifts. They are especially important because
they evoke a need for new responses, different from those
dictated by models which were learned before the change
occurred.

Most data streams mining algorithms acknowledge the
need to handle concept drifts. Two approaches are prevalent:
One is to discard old observations. The other is to relearn the
model, or parts of the model, when a concept drift becomes
evident. However, most data stream mining algorithms rely
on a decline in the performance of the model as an indication
for concept drift detection. This method, while sometimes
effective, has no statistical backing and therefore can be
expected to yield inferior results comparing to statistical
based change point detection algorithms.

From a statistical point of view, the change point detection
problem can be solved optimally by computing the prefix of
the current sequence of samples which maximizes the prob-
ability that the suffix was sampled from a different distribu-
tion. This can be done subject to a set of assumptions on the
distribution of the samples (e.g., that it is Normal) and of
changes (e.g., that their arrival rate is Poissonian). This
approach is, however, impractical for a large number of
samples. The state of the art in statistical change point detec-
tion on data streams is therefore to use the Page-Hinkley test
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(PHT), whose run-time is linear in the number of samples. In
a streaming setup that would mean maintaining a test statistic
of constant size and performing O(1) updates to it per new
sample. Naturally, run-time performance like this can only be
achieved at a significant cost in terms of false alarm rate, the
number of samples needed to detect a change, and the accu-
racy at which the change point is detected.

The present invention relates to an alternative to PHT
which relies on the best practice of solving the more informed
problem of testing whether two sets of samples were derived
from the same distribution. The algorithms of the invention
make use of the unique convergence properties of two sample
tests to probabilistically find the point which maximizes their
value. That point closely approximates the change point. As
both analysis and experiments show, the probabilistic algo-
rithm of the invention maintains just O (1) candidate change
points and their related aggregate information. Therefore, it
only requires O (1) update operations per new sample, which
is comparable with PHT. However, because the two sample
tests used by the invention are much more powerful than PHT,
and because the probabilistic algorithm of the invention does
not degrade that power significantly, the algorithm of the
invention is far better than PHT both in terms of false negative
to false positive rate and in terms of the accuracy at which it
locates to the change point. This superiority is further exem-
plified in a simplistic application in which the algorithm
monitors the mean of a piece-wise stationary data stream at
far better accuracy than the one achieved using PHT or others
previous approaches.

Notations

Let X,={Xq, X, . . . , X,,} be a prefix of an open-ended
stream of samples such that x,eD. For each point i in the prefix
denote the samples X, . . . , X, ; the head of the prefix and the
samples X, . . ., X,, the tail of the prefix. When for some point
in the stream the head and the tail follow different distribu-
tions that point is denoted x..

All of the tests described herein measure a test statistic on
the stream and indicate a change whenever that statistic
exceeds a user provided constant A. The timeliness of a test is
the minimal n larger than ¢ at which the test statistic exceeds
A. The run length of a test is the n for which the test statistic
first exceeds A even though no change occurred (i.e., n<c).
Since the run length is dependent on random variations in the
data we usually refer to the average run length (ARL), which
is its average over multiple executions. In all of the algorithms
discussed herein the test indicates not only the fact of the
change but also the point x,,,,. at which it suspects the change
occurred. The difference of that point from the actual change
point, Imax—cl, is the test accuracy.

Let fbe atwo sample test statistic, we denote f; (n) the same
test statistic as applied to the head and the tail of a prefix of
size n, relative to the i” point. We notice here that because f,
(n) is not independent of either f; (n~1) or {, (n) for j=i the
original statistical meaning of f is lost. The test statistics
retain, however, important convergence properties, as dis-
cussed further below.

The Page-Hinkley Test (PHT)

The Page-Hinkley test (PHT) is based on a concept of
log-likelihood ratio. The key statistical property of this ratio is
that a change in the mean of the data is reflected as a change
in the sign of the mean value of the log-likelihood ratio. That
is, the ratio exhibits a negative drift before the change, and a
positive drift after the change. This difference in behavior is
the key to detect the change.

PHT assumes that the observed samples follow a normal
distribution. It also assumes that the true mean p before
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change is known. This is usually not the case in real-life data,
but it is possible to estimate the mean by averaging the
observed samples.

Let p,, denote the sample mean of the samples x,, X;, . . .,
x,,. PHT involves a cumulative variable

defined as the difference between the observed samples
x€{R } and their sample mean p,, cumulated up to step n,
where d is a minimum change magnitude to be detected which
is selected a priori. The minimum value

my = min (Uy)
O=k=n

of this variable is also computed and updated on-line. The
difference between the variable and its minimum value,
U,,—m,,, is the test statistic that is monitored. When this dif-
ference is greater than the given threshold A, the test alerts that
an increase in the mean has occurred. Increasing A causes
fewer false alarms, but might delay or miss altogether the
detection of some change points. Given that a change is
detected, the estimated change point, X, ., is the sample at
which the minimum value m,, was last obtained.

Since the mean can either decrease or increase, PHT can be
executed twice to detect changes in both directions (see
Alg.1).

Algorithm 1-Page-Hinkley Test (PHT)

Detection of an increase in the mean:

Define U, = Zn: (x‘- i g) Uy =0
=0

Define m,, = OnEn (U

Alert when U,, —m,, > A
Detection of a decrease in the mean:

n

Define T, = ; (= o + g) To=0

Define M,, = Omkax (Ty)

Alert whenM,, - T,,> A

The y Two-Sample Test

The ¢ two-sample test is a standard statistical tool for
comparing two samples over the same categorical domain C.
For two samples, one of size S, with S, samples in every
category C,eC and the other of size R with R, samples
respectively in every category C,eC the y test requires thata
simple statistic, Eq. 1, be computed.
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o i (VSTR R;=VR/S Sj)z.

Rj+Sj
=

The predominant characteristic of the > test is that if the
two samples are derived from the same (unknown) distribu-
tion, the statistic, itself a random variable, follows a known
distribution—the 7¢* distribution with € -1 degrees of free-
dom. If; on the other hand, the two samples come from dis-
tributions in which the mean of some categories are different,
then the statistic tends to grow as the two samples grow.

When applied to the head and the tail of the prefix of a
stream, as denoted above, the % test statistic, %, can be
rewritten according to Eq. 1 as:

@

» i(\/i/(n—i)Rj—\/(n—i)/iSj)z
i) = -

Rj+Sj
=1

For simplifying the explanation, we consider below the
simple case in which there are only two categories. Applying
the ? test for more than two categories directly generalizes
the method of the invention, and can be applied by any person
skilled in the art.

The Student’s Two-Sample t-Test

Like the two sample %> test, the Student’s two-sample t-test
determines if the mean has changed between two samples.
However, Student’s t-test applies to real valued samples
rather than categorical ones. Let n, X, , and v be the number
of samples, the sample mean, and the unbiased estimator of
the variance of one sample, and let ng, and X, be the same
aggregates for the other sample, respectively. The Student’s
t-test statistic is:

®

When the test is applied to the head and the tail of a prefix of
a stream T, can be written as:

@)

The aggregates i, X, > and v ¢ require no update when a new
sample is taken. The aggregates n, X,% and v = can be updates
incrementally by using the aggregates sumR,, and sumR .
The sample mean

sumR,
n—i-1

- 1 “
X =n—i—1;xj=

where sumR,,=sumR,,_,+x,. The unbiased estimator of the
variance v z=
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n—i 5 2

2 sumRﬁ o)
R

TTnoicl n-i-1

n—i

n—i-1

(Xg)

1 n
n—i—I;xﬁ_

where
sumR >=sumR,,_,>+x,>.

The test is considered valid when each sample is indeed
random, the samples are independent, and the samples follow
a normal distribution with an unknown mean.

The predominant characteristic of Student’s t-test is that if
both samples are derived from the same unknown distribu-
tion, then the test statistic has a known distribution—Stu-
dent’s t distribution with the degrees of freedom calculated
using

(vs/ng + vR/nR)2

(Vs/ﬂs)z/(”s — D+ (el fing = 1)

If, on the other hand, the two samples come from distributions
in which the mean is different, then the value computed by the
test statistic tends to grow with every increase in sample sizes.
Confidence Intervals on the Mean

Let R be a sample of size n which follows the binomial
distribution Bin (n, p). If p is the sample mean of R, then the
normal approximation interval estimates that, with probabil-
ity greater than 1-a., the value of p is in the range

5
pi-p) ®

n

b2 _op

Here, 7Z,_.,, denotes the 1-a/2 percentile of a standard
normal distribution N (0, 1).

If R follows the normal distribution N (i, o), and $ and sd
are the unbiased estimators of the mean and the standard
deviation of R the approximation interval estimates that with
probability greater than 1-a the value of the actual mean 1 is
in the range:

bar sd (6)

I—GIZW'

Here, t*,_,,», denotes the 1-a/2 percentile of Student’s t
distribution.

SUMMARY OF INVENTION

It is an object of the present invention to present a comput-
erized method for detecting a change point in a data stream.

It is another object of the present invention to present a
computerized method for detecting a change point in a data
stream by using a two-sample test on candidate points of the
data stream.

The present invention thus relates to a computerized
method for detecting a change point in a data stream by
testing whether two sets of samples from the data stream were
derived from the same distribution, wherein the test uses the
unique convergence properties of the two sample tests to
probabilistically find the point which maximizes their value,
said point closely approximating the change point.
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In some embodiments, the test used is the y* two-sample
test.

In some embodiments, the method comprises the steps of:

(1) maintaining a list of candidate change points in the data
stream, and relevant aggregate information;

(i1) adding each new point in the data stream as candidate;

(ii1) computing an upper bound and a lower bound on the
long term value of the %> two-sample test for every candidate
in the list;

(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound values of
other candidates, with high probability; and

(v) indicating a change point when one candidate exceeds
a given threshold.

In some embodiments, the relevant aggregate information
comprises the number of points, number of occurrence of data
from different categories or other statistics which can be
incrementally updated with every new sample.

In some embodiments, the test used is the Student’s t-test.

In some embodiments, the method comprises the steps of:

(1) maintaining a list of candidate change points in the data
stream, and relevant aggregate information;

(i1) adding each new point in the data stream as candidate;

(ii1) computing an upper bound and a lower bound on the
long term value of the Student’s-t two-sample test for every
candidate in the list;

(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound values of
other candidates, with high probability; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold.

In some embodiments, the aggregate relevant information
comprises the number of point, sum of data, sum of the square
of the data or other statistics which can be incrementally
updated with every new sample.

In some embodiments, the test used is the mean estimation
algorithm.

In some embodiments, the method comprises the steps of:

(1) maintaining the sum of the data and number of samples;

(i1) updating the said sum and number with every new data;

(ii1) removing from said sum and number the sum and
number of the data in the first set of the data for the candidate
which indicates a change;

(iv) using the current sum and number to compute the
average which is the estimation for the mean; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold.

In some embodiments, the test used is any two-sample test.

In another aspect, the present invention relates to a non-
transitory computer-usable medium having computer read-
able instructions stored thereon for execution by a processor
to perform a computerized method for detecting a change
point in a data stream by testing whether two sets of samples
from the data stream were derived from the same distribution,
wherein the test uses the unique convergence properties of the
two sample tests to probabilistically find the point which
maximizes their value, said point closely approximating the
change point.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows three different points in a sequence: the
change point ¢, c+m, and c-m.

FIG. 2 is a graph showing projected test statistics.

FIGS. 3a-3b are graphs of a typical experiment, FIG. 3a
showing the result using the ProTO-T algorithm, while FIG.
35 showing the result using the PHT algorithm.
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FIG. 4 presents the cumulative distribution function (CDF)
of the ProTO-T cost for the typical experiment illustrated in
FIGS. 3a-3b.

FIG. 5 shows the average accuracy of ProTO-y? over four
different magnitudes of change (A) in an average experiment.

FIG. 6 is a graph showing Timeliness vs. ARL.

FIGS. 7a-7b are graphs showing the cost average of the
ProTO-y* experiment of FIGS. 5, 6 illustrating cost vs. Accu-
racy (FIG. 7a) And Timeliness (FIG. 7b).

FIG. 8 depicts Accuracy vs. ARL in an experiment com-
paring ProTO-T with PHT.

FIG. 9 depicts Timeliness vs. ARL in an experiment com-
paring ProTO-T with PHT, showing that ProTO-T takes sev-
eral hundreds of samples less than PHT to indicate after the
change occurrence.

FIGS. 10a-105 are graphs of the cost average of ProTO-T,
showing that ProTO-T uses less than one thousand candidates
before the change. FIG. 10a depicting cost vs. accuracy, while
FIG. 105 depicting cost vs. timeliness.

FIG. 11 depicts a typical experiment with the mean esti-
mation algorithm.

FIG. 12 is a graph showing the utility of the Mean Estima-
tion Algorithms for changes every 10,000 samples on the
mean (L.

FIG. 13 is a graph of the cost of the ProTO-Mean Algo-
rithm, showing that ProTO-Mean uses less than 1,200 candi-
dates more than 90% of the time.

FIG. 14 is a graph of the Kolmogorov-Smirnov (KS) test
statistic value when the mean of the random source is changed
at sample X, go0-

FIG. 15 is a graph showing, for four different heads and
tails, the same KS-test statistic (of FIG. 14) when no change
occurs.

FIG. 16 is a graph showing the F-test statistic behavior
when the variance of the random source is changed at sample
20,000.

FIG. 17 is a graph showing the F-test statistic behavior
when no change occurs on the variance of the random source.

FIG. 18 is a graph showing the problem definition of induc-
ing confidence bounds on the difference between the test
statistics of two time-windows.

DESCRIPTION OF EMBODIMENTS

In the following detailed description of various embodi-
ments, reference is made to the accompanying drawings that
form a part thereof, and in which are shown by way of illus-
tration specific embodiments in which the invention may be
practiced. It is understood that other embodiments may be
utilized and structural changes may be made without depart-
ing from the scope of the present invention.

Convergence Properties of y,2(n) and T,(n)

Below, the long-term behavior of y,*(n) and T,(n) are
observed as n grows toward infinity and it will also be shown
how to induce an upper and a lower bound for the value to
which both y,*(n) and T,(n) will converge. The expected
dominance of the change point statistic is also analyzed.

An Upper and a Lower Bound for the Projected Test Statistic

Assume that the samples of a stream follow the Bernoulli
distribution and that the sample mean of the head of a point i
is § while the actual mean of its tail is p. The > test statistic for
a point i has a useful convergence property: Since the sample
mean of the tail tends to p as n grows, ,*(n) will eventually
tend to a constant which only depends on the difference of §
from p and on the size of the head:
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o (P9 M
r}iﬂ;){; (= p(l-p)°

Similarly, if the samples of a stream follow the normal
distribution and the sample mean of the head of a point i is X
while the actual mean of its tail is ; the Student’s t-test
statistic for a point 1 will eventually tend to a constant:

. o i
lim Tin) = (K5 - ug) T

Eq. 7 and Eq. 8 induce an upper and a lower bound for the
value to which y,%(n) and T,(n) will converge respectively. If
at sample n the sample mean of the head of a point i is § and
the average of its tail is q,, then by replacing p with the
confidence interval in Eq. 5 we gain a confidence interval on
the limit of y,*(n). As a result, the maximal expected value
(i.e., the upper bound), %,* of y,(n) is

®

N N 2 ©)
R b(l=D) .|
PntZian — Y 4|t

lim x?(n) < x* = max
n=oo

bo(1=b,)

The minimal expected value (i.e. the lower bound), 5, of
%,2(n) has two different cases. If

bo(1-by)

G€P,£Z_op n

then it might be as low as zero. Otherwise it is Eq. 10:

2
N [P=p) .
[Pn 2 — 9

bo(l=py)

10

lim x?(n) = x} = min
nooo

Similarly, if at sample n X sand vgare the sample mean and
the unbiased estimator of the variance of the head respectively
and X,, and sd, are the average and the standard deviation of
the tail respectively, then replacing i, with the confidence
interval in Eq. 6 we gain a confidence interval on the limit of
T,(n). As a result, the maximal expected value, T,”, of T,(n) is

5 5 sd, an

JE&T‘M) =T :max{(XS - X, i[aIZW] E }

The minimal expected value, T/, of T,(n) has two different
cases. [f X, ;e

v *
LEE 29
n
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then it might be as low as zero. Otherwise it is Eq. 12:

lim Ty(n) > T} n{(X o Sd"] [ }
im T;(n) = Ty = mi 5 — ”_aIZT —
nooo n Vs

Expected Dominance of the Change Point Statistic

Consider a sequence of samples coming from a piecewise
stationary random source. Assume that this random source is
binomial and at time ¢ there is a change. Assume also that the
samples before time ¢ follows the binomial distribution Bin
(¢, q) and samples that come after time ¢ follows the binomial
distribution Bin (n-c, p). Consider three different points in
that sequence: the change point ¢, c+m, and c-m (see FIG. 1).

Assume that at sample n the sample mean of the head for
point ¢ is q while its sample mean of'its tail is p. Since p tends
to p as 0 grows, y-(n) will eventually tend to a constant
according to Eq. 7.

Similarly, assume that the sample mean of the head for
point c+mis q_,,, while the sample mean of'its tail is p., ,,,- As
can be seen in FIG. 1, q.,,, contains samples from both
distributions: Bin (c, q) with average q and Bin (m, p) with
average p. It follows that

(12

cg+mp

Gotm = T

Since, p..,,, tends to p as n grows, 5., .%(n) will eventually
tend to a constant:

a3

(53
p- (c+m)
lim 2 () =
oo p(l-p)
Similarly, assume that the sample mean of the head for
pointc-mis g, ,, while the sample mean ofits tailisp__,,,. As
canbeseeninF1G.1, q,._,, contains samples from distribution
Bin (c-m, q) with average q. It follows that q._,,=q. Since,
p.._,, tends to p as n grows, y__,,%(n) will eventually tend to a
constant:

(p=ar(c=m 4

lim x7_,(n) =
e ¥ p(l-p)

Pr{lim 2 () = lim 2] ~ Prig>2p-5)
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Now, consider the chances that y_*(n) is dominated by
eithery_, ,%(n) or .._,,%(n). For this to happen, Eq. 13 should
be greater than Eq. 7. The resulting inequality has two roots:
the first root occurs when P is greater than

C
p+2—(p-4)r
m

Using the Hoeffding bound, it can be shown that this prob-
ability can be bounded from above by Eq. 15, which
decreases exponentially as the proportion of ¢* to m increases.
It follows that if the change occurs after a significant number
of' samples, then the change point statistic is likely to eventu-
ally dominate nearby points.

. . N c N 15
Pr(nlgg Kom() = nlgg x?(n)) =~ Pr(p >p+ ZZ(p - q)) 15
= Pr(pm — pm>2c(p - )

e m

The second root occurs when p is lower than p-Y2(p-q)
Using the Hoeffding bound, it can shown that this probability
can be bounded by Eq. 16, which decreases exponentially as
m increases. Again, the chances that the change point statistic
will dominate that of nearby points are overwhelming.

Pr{lim i = tim ) ~ P{p <p- Y- ?) e

e
. 1 N
= Pr{pm —pm<—zm(p —q)]

1 .
< efzm(p*q)z_

Point c—m can be similarly analyzed. Note that the first m
samples in the tail of the point c—m follow the distribution Bin
(m, p) and the c—m samples in its head follow the distribution
Bin (c-m, q). Consider the chances that y_2(n) is dominated
by y._,,2(n). For this to happen, Eq. 14 should be greater than
Eq. 7. The resulting inequality has two roots: the first root
occurs when q is greater than 2p-g. Using the Hoeffding
bound, it can be shown that this probability can be bounded
from above by Eq. 17, which decreases exponentially as c-m
increases. Similarly, it follows that if the change occurs after
a significant number of samples, then the change point statis-
tic is likely to eventually dominate nearby points.

an

=Pr@glc-m)—glc-m)>(c-mQ2p-q-7)

< g 2e=mCp=g-9)°
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Similarly, the second root occurs when q is lower than
2q,,—p, where q,, is the average of the first m samples in the tail
of'point c-m. Using the Hoeffding bound, it can be shown that
this probability can be bounded by Eq. 18, which decreases
exponentially as c—m increases. Again, the chances that the
change point statistic will dominate that of nearby points are
overwhelming.

Pr{lim x2 ) = lim X)) ~ PrG>2gn—p)

m<<c

= Priglc -m)—q(¢ - m) < (¢ =m)(2gm — g — p))

< g AemCam-a-p)?

Expected Dominance When No Change Occurs

Our analysis is also valid when no change occurs on the
distribution of the random source. In this case, the greater the
length of the head of a point, the closer q is to p. Consider,
instead of ¢, the point max for which Iq—pl is maximal. Now,
Egs. 15 to 18 can all equally be applied to the difference
between ¥,,.> (1) and 5, 2(0), Yarem-(1) With same
consequences. It follows that even when no change occurs,
one point is likely to dominate.

The analysis provided here has two limitations: first, it
considers a single pair of points when in reality there are
multiple interdependent points. Dependency among points
could mean that if one point’s statistic overshadow the statis-
tic of ¢, so will the statistics of other points. However, central
to our purpose is that the chances that any point would ever
dominate the one which has the maximal % value diminish
exponentially with the distance between those points. Sec-
ond, the analysis provided here is limited to the simpler test—
the _ 2. Nonetheless, our experiments reveal no real differ-
ence between Student’s t-test and the % test and thus hint the
analysis might hold for that test as well.

Change Point Detection Using the y* Two-Sample Test

The Probabilistic Test Optimization algorithm, ProTO-y?,
(see Alg. 2) maintains a set of candidate change points C.
Every candidate ieC has two pairs of aggregates: S,° and S,
for the head, and R, and R, for the tail. At every new sample
X, the algorithm increases either R,° or R, for every candi-
date ieC, depending if x,, is zero or one. Then, the algorithm
recalculates +,*(n) according to Eq. 2, and recalculates ¥,
and y,* according to Eq. 10 and Eq. 9, respectively, with

s? R

! and p = ———.
Pn R? + R}

E ]

The last step taken after every new sample x,, is to update
the candidate set. A new candidate is first added to C, whose
tail aggregate is zero and whose head aggregates are the sums
of the respective head and tail aggregates of one of the first
candidate in C. Then, the algorithm reviews the candidate set
and purges unneeded candidates according to the following
criteria: Let max denote the candidate whose statistic, ¥, ...
(n), is the highest among those in C. Also, let red denote the
candidate whose lower bound statistic, ¥,/ is the highest
lower bound in C. As can be seen in FIG. 2, and following the
analysis above (in Expected dominance of the change point
statistic), any candidate i€C other than max, whose 7, is
below v,/ is expected to continue to have a lower statistic
value than that ofred. Therefore, it is redundant because, with
high probability, red would indicate the change before 1.
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ProTO-x> retains any candidate ieC whose ¢ is greater
than y,,/, as these are the candidates whose y,%(n) might
eventually exceed that of both candidates max and red. All the
other candidates in C are then discarded. ProTO-y* also
checks whether the candidate max has passed the threshold A.
If it has, an alert is indicated with the suspected change point
indicated to be max.

(18)

Algorithm 2 The ProTO-y? Algorithm

Input:
Alert threshold A
Confidence a
Input stream {Xq, Xy, .. . }

Data structure:
A candidate set C where every i € C has two pairs of aggregates S,°
and S;! for the head and R,° and R,! for the tail.
Initially C contains a dummy candidate —1 with Sflo, Sfll, Rﬁlo,
and R_,! all set to zero.

Definitions:
For every i € C, %2 (n) calculated according to Eq. 2, %, and y;* are
calculated according to Egs. 10 and Eq. 9, respectively, with

S0
S+ 8!

R?
and f, = L

max = arg max {x?(n)}
ieC

red = arg max {)(f}
ieC

first := min {i € C}
At the arrival of sample x,,:
LLetS, %< S, 2 +R;. Cand S, — S, L+ Ry !
2.LetC < C\ {n}
3. Let max < first and red < first
4. Forevery iEC
(a) Increment R,° if x,, = 0 or increment R, ! ifx,, = 1
(b) Recalculate 2 (n), %/, and 3,
(©) If %2 () > Yoman” (1) then max < i
(d) If %’ > %o’ then red « i
5. If %, () > A then indicate of a possible change at sample max
6. Foreveryi€C
() If i = max and y <%, then C < C\{i}

Change Point Detection Using the Student’s t-Test

ProTO-T (see Alg. 3) is very similar to ProTO-%>. The
main difference is in the aggregates it maintains for every
candidate, and the statistic computed for everyone. Every
candidate ieC has two pairs of aggregates: sum$S, and sumS,>
for the head, and sumR, and sumR,? for the tail. At the arrival
of new sample x,, all the aggregates in the tail of candidate 1
are updated as follows: sumR<sumR,+x, and
sumR *<—sumR,*+(x,,)?. Similar to ProTO-y?, ProTO-T also
recalculates for every candidate i, T,(n) according to Eq. 4,
and recalculates, TA.Z, and T;” according to Bq. 12 and Eq. 11,
respectively, with X, =X, and sd,=VVR.

At every new sample x,,, ProTO-T also creates a new can-
didate and adds it to the set C. The tail aggregates of the new
candidate are empty and its head aggregates is the sums of the
respective head and tail aggregates of the first candidate in C,
which are computed as follows: sumS,<—sumS;, +sumR,,,
and sumSizesumSﬁ,5t2+sumRﬁ,5t2 (it should be noted that
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the sum of sumS, and sumR, is the same for all i, as is the sum
of sumS,? and sumR ). Then, the algorithm locates the can-
didates max, with the maximal T,,,, (n) value, and red, whose
T,, ./ is maximal, and purges redundant candidates in the same

14

Algorithm 4 ProTO-Mean Algorithm

Input: Same as for Alg. 3
Data structure: Same as for Alg. 3

way ProTO-y? does. Finally, ProTO-T indicates a change at 3 Definitions: Same as for Alg. 3
max if T,,__(n) surpasses A. Output:
sumS g + sSumR g
Algorithm 3 The ProTO-T Algorithm "
Tnput: 10 At the arrival of sample x,,:
Alert threshold A 1. Let sumS; <= sumSy,., + sumRy,.,, and sumS,? « sumSﬁm2 + sumRﬁm2
Confidence a 2.LetC < C {n}
3. Let max < first and red < first
Input stream {X¢, Xy, .. . } 4 Forevery i € C
Data structure: . (a) sumR; < sumR; + x,, and sumR ? < sumR;? + (x>
A candidate set C where every i € C has two pair of aggregates: sum$; : o g 4 "
5 5 A i 15 (b) Recalculate Ty(n), T;, and T;*
and sum$;” for the head, sumR; and sumR;* for the tail. FT(m > T ! ,thl ? J
Initially C contains a dummy candidate —1 with sums_, sumS,lz, (z) I fTiEHQT ’ft“h"(n) ;1(1_mlax !
sumR_;, and sumR_,? all set to zero. @ : red LICNIE !
Definitions: 5 If Trpax(n) > A then . .
Forevery i € C, T;(n) calculated according to Eq. 4, T/, and T;* are EE; lb}emove e\l/eéycc andllldg:etll;max from C
calculated according to Eq. 12 and Eq. 11, respectively, with X,, = 20 ; Siﬁ;ézlsm;ljcsmg 1= max
Xgandsd, =Yg ii. sumSll-2 - sumlSl-2 - smggjmf
iil. i < i — max
max = arg max {T;(m)} 6. Else
(a) Forevery iEC
. (i) If i = max and T < T,/ then C <= C\{i}
red = arg r‘_réacx {T;} 25
first = min {i €C} ProTO-Mean can be compared with an adaptation of PHT
At the arrival of sample x for mean estimation. Whenever an alert is indicated, the PHT-
1. Let sum$, < sumSy,., + SumRy,,, and sumS,? < sumSs.” + sumRp,,> Mean algorithm treats all of the samples that preceded the
2.LetC < C ' {n} indicated change point as if they came from a different dis-
i' ijz; r;fex T g(sjt and red < first 30 tribution. Thus, PHT-Mean is restarted whenever a change is
() Sumg_ — sumR, +x, and sumR ? — sumR.? + (x,)? detected. The output of PHT-Mean is the percentage of the
(b) Recalculate T,(n), T/, and T sample mean L, (see Alg. 5).
(¢) If T{n) > T,,.(n) then max < i
(d) If T/ > and T, then red < i
5. If T,,0(n1) > A then indicate of a possible change at sample max . .
6. Forevery i €C 35 Algorithm 5 The PHT-Mean Algorithm
(2) If i = max and T,* < T,/ then C < C\{i} Input: Same as for Alg, 1
Data structure: Same as for Alg. 1
N . Definitions: S for Alg. 1
The Mean Estimation Algorithm Oztplittons ame as forAlg
Computation of the mean in various scenarios is often used 40 Lee
as a toy example, a demonstrator, in data mining. Valuable in N Lﬂft c< 01 -
itself, this example is also strongly related to a family of t the arrival of sample X,
clustering algorithms—k-means. In the context of change n s
point detection, we are interested in the benefits of ProTO for U, = Z (X; —tn = 5)
mean estimation in piecewise stationary streams. Building on 45 =
the algorithmic framework of ProTO, the ProTO-Mean algo- ]
rithm computes an approximation of the mean as the average m, = min (Uo)
of all samples seen since the last change.
The main difference between the ProTO-T and the ProTO- fU, - m, > 2 then ¢ < n
Mean algorithms is on line 5: whenever an alert is identified, 30 N s
the ProTO-Mean algorithm treats all of the samples that pre- T, = Z (x; — 5)
ceded the indicated change point as if they came from a i=e
different distribution. Thus, candidates generated before the
indicated change point are discarded. Candidates generatedat M, = max (T;)
and after the suspected change point must have the aggregates
of the samples gathered before the change point discarded IfM,-T,>Athenc<n
from their head. Since these aggregates are exactly the head
aggregates of the candidate which produced the alert, the Experimental Validation
ProTO-Mean algorithm simply deducts the head aggregates 60  In this section, we conducted a series of experiments com-
of max from the head aggregates of every candidate. Since paring the average run length, the accuracy, the timeliness and
ProTO-Mean treats all candidates that preceded at and after the cost of ProTO to those of PHT.
the suspected change point as if they created after the sus- Typical Experiment
pected change point, it deducts max from every candidate i In a typical experiment with the ProTO-T algorithm, ran-
(see line 5(b)iii). Furthermore, the output of ProTO-Mean is 65 dom data is sampled from a standard normal distribution for

the percentage of the sample mean of the head and the sample
mean of the tail of any candidate (see, Alg. 4).

20,000 samples. Then, at sample 20,000, the mean of the
random source is changed by A=0:5%. As FIG. 3a shows, the
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maximal statistic value T,,,, (), which is generally lower than
15 (i.e., A) until sample 20,000, begins climbing. After 100
samples, T,,,.(20, 100) crosses the chosen alert threshold A.
As can be seen, a greater A would reduce the number of false
alarm (two false alarm are evident: in sample 7,500 and in
sample 17,000), but would also delay in detection of the
change.

FIG. 3b describes the same typical experiment with PHT.
As the figure shows, the PHT statistic value, (U,-m,), is
generally lower than 20 until sample 20,000, when it begins
climbing. At sample 21,500, the PHT statistic value crosses
the chosen alert threshold A. As in the previous experiment,
increasing A would reduce the number of false alarm (two
false alarm are evident: in sample 9,500 and in sample
17,000), but would also delay detection of the change.

The accuracy of the change time estimation is also inter-
esting. For PHT, 500 samples separate sample 19,500, in
which the last minimum value m, was obtained, and the
change point. In comparison, for ProTO-T the candidate with
the maximal statistic value which first crosses the chosen alert
threshold is the one created at sample 20,0006.

The cost of the ProTO-T is proportional to the number of
candidate change points it maintains. Since that number has
random properties, it is presented in terms of its cumulative
distribution. FIG. 4 presents the cumulative distribution func-
tion (CDF) of the ProTO-T cost for this typical experiment.
As we can see, the ProTO-T cost may be different before and
after the change occurs. We can see that on average ProTO-T
maintains a few hundred candidates: five hundreds before the
change and seven after the change. Furthermore, before the
change, it uses less fewer than one thousand candidates more
than 90% of the time.

The performance of a change point detection is measured
in terms of its timeliness (when, if ever, it detects the change),
accuracy (how closely it points to the change point) and cost
(in our case, the number of candidates it maintains). However,
timeliness and accuracy must be presented relative to the rate
of false positive. This is because they can easily be traded
against a higher rate of false positives. Thus, in our perfor-
mance measurement the full range of the tradeoff of accuracy
vs. ARL and timeliness vs. ARL is investigated. Similarly, the
cost of the algorithm can be reduced at the expense of accu-
racy and timeliness and thus our results present that tradeoff.
Inthe performance graphs we also added a line indicating the
performance point achieved at the reasonable average costs.
We prefer this presentation to the three dimensional graphs
(e.g., Accuracy vs. ARL vs. Cost) otherwise required.

Experiment with ProTO-y>

In the following experiment, random data is sampled for
every controlled data stream from the same binomial distri-
bution for 200,000 samples. Then, at sample 200,000, the
mean of the random source is changed by A. We ran the
ProTO-y? over one hundred different controlled data streams
for each certain A. FIG. 5 shows the average accuracy of
ProTO-y? over four different magnitudes of change (A). Typi-
cally, at all magnitudes of change and especially for the
higher ARL values, ProTO-y* accuracy is within several
dozen of samples. Furthermore, ProTO-y? timeliness is
within several hundred samples (see FIG. 6).

Complementing this view is the cost average of the ProTO-
2. As FIG. 7 shows, ProTO-y* uses less than one thousand
candidates before the change.

Because the magnitude of change A does not affect the cost,
we report here only the cost average for A=1%. We can see
that the accuracy average deteriorates as the cost average
decreases. This is because the ProTO-y retains fewer candi-
dates; thus, it is less likely that one of them would points
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accurately to the change point. The timeliness average also
deteriorates as the cost average decreases, for the same rea-
son.

The horizontal solid line in FIGS. 5, 6, and 7 is a cut-off for
average cost of 100 when A=1%. As can be seen, even at this
reasonable cost ProTO-y? takes just 93 samples after the
change in order for it to indicate for change. In addition, the
ProTO-yx* accuracy is within 33 samples and its ARL is 8,000.

ProTO-T and PHT

In the following experiment, we compared ProTO-T with
PHT. Our results show that ProTO-T outperforms PHT in the
proportion of both accuracy and timeliness to ARL. We also
show that the cost of ProTO-T is asymptotic to that of PHT,
which is constant per new data sample. What is notable here
is that ProTO-T provided better accuracy and timeliness for
an acceptable cost.

In this experiment, random data is sampled for every con-
trolled data stream from the same standard normal distribu-
tion, for 200,000 samples. Then, at sample 200,000, the mean
of'the random source is changed by A. We ran the experiment
over one hundred different controlled data streams for each A.
FIG. 8 depicts the accuracy average of ProTO-T vs. that of
PHT over four different magnitudes of change A. The mini-
mal detectable change threshold of PHT, 9§, was set to A at
each experiment. In comparison, the ProTO-T indications are
far more accurate than those of PHT. At all magnitudes of
change and especially for the higher ARL values, ProTO-T
usually indicates for a change within accuracy of several
dozens of samples whereas PHT usually indicates for a
change within accuracy of several hundreds. Furthermore,
ProTO-T takes several hundreds of samples less than PHT to
indicate after the change occurrence (see FI1G. 9).

Complementing this view is the cost average of ProTO-T.
As FIG. 10 shows, ProTO-T uses less than one thousand
candidates before the change. Because the magnitude of
change, A, does not affect the cost, we report here only the
cost average for A=1%. As we can see, the accuracy average
deteriorates as the cost average decreases. Similarly, the time-
liness average deteriorates as the cost average decreases.

The horizontal solid line in FIGS. 8, 9, and 10 is a cut-off
for average cost of 30 when A=1%. We can see that ProTO-T
takes about 90 samples after the change in order for it to
indicate for change. In addition, the ProTO-T accuracy is
within 50 samples and its ARL is about 1,000. In comparison,
for the same timeliness and accuracy, the ARL of PHT is
about 100.

Mean Monitoring

We compared the ProTO-Mean algorithm to PHT-Mean.
Analysis of the utility of the algorithm becomes much simpler
when it is given a specific application. Here, the utility metric
can be taken directly from the application domain. Further-
more, cases in which the algorithm fails to detect a change
altogether or falsely alarms have a simple, measurable, effect
on performance. The utility metric of the mean estimation
algorithm is measured by the distance of the estimated mean
from the actual mean.

A typical experiment with the mean estimation algorithm
is presented in FIG. 11. The mean of the random source 1 is
drawn against the estimation of the ProTO-Mean algorithm.
The mean p changes randomly every 10,000 samples and the
output of the algorithm follows it. When, as is typical, the
algorithm detects the change, it flushes its statistics, which
naturally results in a short period of noisy estimation (most
evident for samples 50,000, 160,000, and 180,000). When the
change is small, it may take longer for the algorithm to iden-
tify it (e.g., at sample 80,000) or it might fail to detect it
altogether (e.g., at sample 60,000). In these cases the algo-
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rithm pays in longer periods of notable inaccuracy. Also evi-
dent in FIG. 11 are two false alarms: right after the change in
sample 120,000 and just before the change in sample 160,
000. In both cases, the algorithm pays in a very short period of
very high inaccuracy. This is because the false alarm was
caused by a short tail of atypical data, which, when the algo-
rithm detected the change and discarded the head, momen-
tarily became its approximation of L.

FIG. 12 provides a more meaningful view of the experi-
ment. As we can see, the ProTO-Mean algorithm’s approxi-
mation is within 2% of the actual mean 90% of the time. Note
that this number includes an error, which stems from the
limited size of the sample right after the change is detected. In
contrast, the PHT-Mean algorithm’s approximation is within
10% of the actual mean 90% of the time. On the whole,
ProTO-Mean is far more accurate than PHT-Mean.

ProTO-Mean and PHT-Mean can be further compared with
a trivial algorithm for mean estimation which it maintains a
sliding window with fixed size. On every new sample it recal-
culates the average from the last samples seen in that window.
FIG. 12 also shows the accuracy of this algorithm with two
different window sizes of 100 and 1,000. As we can see, the
fixed window algorithm’s approximation is within 20% of'the
actual mean 90% of the time.

Complementing this view is the cost distribution of the
ProTO-Mean algorithm. As FIG. 13 shows, ProTO-Mean
uses less than 1,200 candidates more than 90% of the time.
Appendix: General Applicability of the ProTO Algorithm

The ProTO algorithmic framework might be applicable to
many statistical two-sample tests.

We have shown, by way of example, how to apply the
framework to the y* two-sample test and to the Student’s
two-sample t-test. However, many two-sample tests deter-
mine whether there is a difference between the two samples
based on the same idea: the convergence of the test statistic
value is very different for two samples from the same
unknown distribution than for two samples from different,
unknown distributions. A person skilled in the art will imme-
diately perceive how to apply the algorithms of the invention
to other two-sample tests. Several examples follow:

The parametric two-sample Z-test compares the means of
the two samples to determine whether there is a difference
between the two samples. If the two samples are derived from
the same normal distribution, then the test statistic value has
a known distribution—the normal distribution. If, however,
the two samples come from different distributions, then the
test statistic value tends to a constant as one of the samples
grows. The Z-test statistic is

X1-X;
ot o3

ny 2

where X, and X, are the sample means, o, and o, are the
standard deviation, and n, and n, are the sizes of the first
sample while the second sample respectively. If one sample
has a fixed size and the other grows, this test statistic eventu-
ally tends to a constant
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The two-sample Kolmogorov-Smirnov test (KS-test) is
used to test whether two samples come from the same distri-
bution. The two-sample KS-test uses the maximal distance
between cumulative frequency distributions of the two
samples as the test statistic. The KS-test statistic is

D

nn

r=sup | Fip—Fo, |
x|

whereF, , and I, ,,.are the empirical distribution functions of
the first and the second sample respectively. If the two
samples are derived from the same unknown distribution,
then the test statistic value has a known specific distribution—
the Kolmogorov distribution. Otherwise, it tends to a constant
as one of the samples grows. FIG. 14 and FIG. 15 present the
results of a simulation of the case where one of the samples
has a fixed size and the other sample size is increased.

FIG. 14 presents the KS-test statistic value when the mean
of the random source is changed at sample X, oo, Whereas
FIG. 15 presents, for four different heads and tails, the same
KS-test statistic when no change occurs. Obviously, the KS-
test statistic value tends to zero when no change occurs on the
mean of the random source while in the other case it does not.
Such difference in behavior can possibly be used by a ProTO-
like algorithm.

The two-sample F-test is designed to test whether the two
samples have the same variance. It does this by considering a
decomposition of the variability in terms of sums of squares.
The F-test statistic is defined as the ratio of two scaled sums
of squares reflecting different sources of variability and is
computed as F=

st
53

where S, is the larger sample variance and S, is the smaller
sample variance. If the two samples have the same variance,
then the test statistic value has a known specific distribution—
the F-distribution. Otherwise, it tends to a constant as one of
the samples grows. FIG. 16 and FIG. 17 present the results of
a simulation of the case where one of the samples has a fixed
size and the other sample size is increased. FIG. 16 presents
the F-test statistic value when the variance of the random
source is changed at sample X, 4, Whereas FIG. 17 presents,
for four different heads and tails, the F-test statistic when no
change occurs. Again the F-test statistic value tends to one
when no change occurs on the variance of the random source
while in other case it does not. As we proposed for the KS-
test, this difference in behavior may very well be used by a
ProTO-like algorithm.
Resource Optimization

Our approach to the problem of delayed detection is to
dynamically manage both the number of windows and their
sizes. We decide to stop collecting statistics for some time-
windows based on the estimated probability that they will be
the first to alert on a change. In this way the computational
cost of our approach is variate. Approaches e.g., Kifer et al.
and PHT have a constant computational cost which might be
preferred over a variate cost. By choosing to ignore a large
number of time-windows we manage to limit the computa-
tional cost to a constant, which is equivalent to PHT.

In further research two improvements to the basic ProTO
algorithms will be tested. One is to purge the time-window
whose upper bound statistic is the lowest whenever the num-
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ber of the current time-windows exceeds a user predefined
constant (see early results below). The other is to induce
confidence bounds on the difference between the test statis-
tics of two time-windows instead of bounding a single test
statistics of one time-window. Such an improvement makes
the bounds tighter and therefore the cost is reduced (see early
results below).

Early Results in Change Point Detection in Multidimen-
sional Streams

The statistical two-sample test called Hotelling’s 7 2 des-
ignates for detecting changes in the mean of multidimen-
sional data streams.

Two-Sample Hotelling’s T 2 Test

Consider that the observations in the prefix follow a mul-
tivariate normal distribution Z~N,,(1, Z) where p is the mean
vector and X is the covariance matrix. Let X and S be the
sample mean vector and the unbiased sample covariance
matrix respectively. Accordingly, X and S are computed
based on the sample data as follows:

_ 1 1 &
X= ;Z x and § = ﬁz (- B =7
k=1 k=1

The two-sample Hotelling’s 7 2 is the multivariate analog
of the two-sample t-test in uni-variate statistics. It is used in
order to compare two populations which determined if the
mean vector has changed between two samples. Let n,, X,
and S, be the number of observations, the sample mean vec-
tor, and the unbiased sample covariance matrix of one sample,
and let n,, X, and S, be the same aggregates for the other

sample, respectively. Hotelling’s T 2 test statistic is defined
as:

-1 19
T2=(H—Yz)’(ﬂ+&) (7 - 7). @
n m

The predominant characteristic of Hotelling’s 7 2 test is
that if both samples are derived from the same multivariate
normal distribution Z~N,,(u, 2) with unknown p and X, then
the test statistic is x> distributed with p degrees of freedom. If,
on the other hand, the two samples come from distributions in
which the mean vector is different, then the value computed
by the test statistic will no longer distributed as %> and its
value will be significantly larger. The test holds for large
sample size such that n, +n,-p>40.

When the test is applied to the head and the tail of a prefix

of a stream, T 2 (n) can be written as:

-1 20
T?(n):(fl—fz)’(%+%] 1 —T). e

As new observation arrive, X, the aggregates i, X, and S,
require no update while the aggregates n, X, and S, can be
updated incrementally by using the aggregates T, and w,, as
following: The sample mean vector is computed as X=
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where T,=T,_,+X,,. The unbiased sample covariance matrix is
computed as

1 n
S = m; (% —X2)(u — %2

1
n—i-1

D ) - (- (R

k=i

= — [, — (n = DT(%2)']
n—i-1

where m,=w,,_;+X,X,,.

Simultaneous Confidence Intervals for the Mean

Simultaneous confidence intervals are a group of intervals
where each interval contains an individual component of
mean vector with a 100(1-a)% confidence. It is assumed that
there is a multivariate normal population Z~N,(u, X). A ran-
dom sample of n multivariate observations is collected, where
n-p>40. Based on the sample data, X and S are computed.
Then the simultaneous confidence intervals for the mean
vector L can be characterized by the following:

_ 5 Stk
Hi € Xk i)(a,p 7

k=1,...
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where S, are the (k, k) elements of the sample covariance
matrix. Here, ¥, p2 denotes the ¢. percentile of the y* distri-
bution.
Algorithmic Improvements

Maintaining a User Predefined Constant Number of Time-
Windows

We choose, without loss of generality, to apply the algo-
rithmic improvement within the ProTO-T framework. The
improvement considers maintaining a user predefined con-
stant number of time-windows. Similar to ProTO-T, ProTO-
FC (see Alg. 6), maintains a set of time-windows C. Every
time-window ieC has two pairs of aggregates: sumS, and
sumS,” for the head, and sumR, and sumR > for the tail. At the
arrival of new sample x,, all the aggregates in the tail of
time-window i are updated as follows: sumR,<—sumR;+x,,
and sumR*<—sumR *+(x,)*. It also recalculates for every
time-window i, T;(n) according to the following Eq.

Rs-% 22
Tiny = —S_2F

Vs VR

— +

i n-i

and recalculates T, according to the following Eq.

N N sd,
Xs—XntH op——

Vi

i

} @23
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im T;(n) < T} = max{
oo

with X, =X, and sd, =Vv,.
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At every new sample x,, ProTO-FC also creates a new
time-window and adds it to the set C. The tail aggregates of
the new time-window are empty and its head aggregates are
the sums of the respective head and tail aggregates of the first
time-window in C, which are computed as follows:
sumS,<—sumS;, +sumR; ., and sumSizesumSﬁ,Sﬁsum
Rﬁmz. Then, the algorithm locates the time-window max with
the maximal IT,, . (n)! value. Italso locates y, whose T, is the
minimal.

Unlike ProTO-T, ProTO-FC purges the time-window
whose upper bound statistic is the lowest, T,”, whenever the
number of the current time-windows, IC|, exceeds a user
provided constant, 1. Finally, ProTO-FC indicates a change
at max if IT, , (n)| surpasses A.

Algorithm 6 The ProTO-FC Algorithm

Input:
Alert threshold A
Confidence a
Number of time-windows to be maintained n
Input stream {X¢, Xy, .. . }
Data structure:
A time-windows set C where every i € C has two pair of aggregates:
sumS; and sumsS;? for the head, sumR; and sumR? for the tail.
Initially C contains a dummy time-window —1 with sumS_,, sumelz,
sumR_,;, and sumR _, all set to zero.
Definitions:
Forevery i € C, T;(n) calculated according to Eq. 22, T;* are calculated
according to Eq. 23, with 5(,, = )A(R and sd,, := \/ﬁ

max = arg max {T;(n)}
ieC
vy =arg min {T}}
ieC

first = min {i € C}
At the arrival of sample x,,:
1) Let sumS; <= sumS ., + sumR ., and sumS? < sumSﬁm2 + sumRﬁm2
2) Let C <= C\ {n}
3) Let max < first and y < first
4) Forevery i€ C
a) sumR, < sumR, + x, and sumR;? < sumR? + ()
b) Recalculate T,(n) and T;*
¢) If IT,(n)l > IT,,,x(n)! then max < i
) UTTH<T,“theny<i
5)If IT,,..(n)| > A then indicate a possible change at sample max
6) If IC| > then C < C\{y}

Inducing Confidence Bounds on the Difference Between
the Test Statistics of Two Time-Windows

Consider two different points in the stream 1st and 2nd
where 2nd>1st without loss of generality. We look at the

long-term behaviorof T ,,_, .,2(n) as n grows toward infinity
and also how to induce an upper and lower bound for the value

to which 7 ,, ,.(n) will converge. Let h, and H, be the
number of observations and the sample mean vector of the
head of 1st. Let also t; and T, be the number of observations
and the sample mean vector of its tail. Leth,, H,, t,,and T, be
the same aggregates for 2nd, respectively (see FIG. 18).
Furthermore, let I be the distance (i.e. the number of
observations) between these two points. Therefore, the aver-

age of those L observations, d, can be computed as
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Let also, [ be the difference between the sample mean vector
of'the head of 1st and the sample mean vector of the tail of 2nd
(i.e.,0=H,-T,). Furthermore, let ¢ be the difference between
the weighted average

b L _
—H1+—6—T2].

(Le’ $= hy )

and the sample mean vector of the tail of 2nd

Mg v L5
ho T

[Jis a variable which monitors the true change in the mean of
the data distribution while monitors the noise. As a result,

Lm T2 () = im [T3,,00) = T ()] @4
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Eq. 24 induces an upper and a lower bound for the value to

which T ,, . 2(n) will converge. Replacing both [] and ¢
with the simultaneous confidence intervals in Eq. 24 gives us

simultaneous confidence intervals on the limit of 7 ,,, .
(n). Let

2nd
S 2,kk

2
w € £
P Xa,p P

fork={1,j}. As aresult, the maximal expected value (i.e., the

upper bound), T sna-tst s OF T 2nd—lst2(n) is
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-continued
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A possible improvement considers inducing confidence
bounds on the difference between the test statistics of two >
time-windows instead of bounding a single test statistics of
one time-window. Here, we choose to use Hotelling’s T > test
as a plug-in for our algorithm for detecting changes in uni-
variate streams (i.e., p=1). Note that in this case, Eq. 25 canbe 49
written as:
Hm T3, 10 00) < Toy_1; @n
) ) 45
S2nd - Slsr -
- 212 | 2[ 2L
v C T Ca
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Similarly, Eq. 26 can be written as:
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-continued
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ProTO-T 2 (see Alg. 7) maintains a set of time-windows C.

Every time-window ieC has two pairs of aggregates: 7 * and

o, for the head, and 7 / and o/ for the tail. At the arrival of
new observation, x,,, all the aggregates in the tail of time-
window i are updated as follows: T /=7 /+x, and ,=w, '+
(x,)°. Then, the algorithm recalculates 7 *(n) according to
Eq. 20.

The last step taken after every new observation x,, is to
update the time-window set. A new time-window is first
added to C, whose tail aggregates are zero and whose head
aggregates are the sums of the respective head and tail aggre-
gates of any one of the time-windows in C. Note that the sum

of T *and T /isthe same foralli, as is the sum of o,” and w,".
For instance, let ¢ be the first time-window in C and therefore

its head aggregates are computed as follows: T /<=7 wh+
o

The method in which ProTO-7 2 reviews the time-win-
dows set and purges the unneeded time-windows is different
from that of ProTO-T: For each pair of time-windows, 1st and

¢ P P
Tw and o, effw +o

2nd in C, calculate the bounds 7 ,,, ./ and 7 ,, ., . *

according to Egs. 27 and 28 respectively. If 7 ,, , ./ is lower
than zero, remove time-window 2nd from C. Moreover, if

T .1 is greater than zero then remove time-window 1st
from C. Lastly, the algorithm also checks whether the time-
window max has passed the threshold A. If it has, an alert is
indicated with the suspected change point indicated to be
max.

Algorithm 2 The ProTO- 72 Algorithm

Input:
Alert threshold A
Confidence a
Input stream {Xq, Xy, .. . }
Data structure:
A time-window set C where every i € C has two pair of aggregates: 7"
and ;" for the head, and 7 and o; for the tail.
Initially C contains a dummy time-window —1 withT”_,, o”_,,7*_, and
’_, all set to zero.
Definitions:
For every i € C,T ?(n) calculated according to Eq. 20.

max = arg max .2(n)}
ieC !

At the arrival of observation x,,:
DLetT," < T, +Tso and 0y + 0/
2)Let C <= C\ {n}
3) Let max < min {i € C}
4) For every i € C such that i (] p > 40
)T/ =T/ +x,and 0/ =0, +x,%,
b) Recalculate 72(n)
¢) IfT 2(M) >T oo’ () then max < i
5) IfT ... 2(n) > A then indicate of a possible change at observation max
6) For every different pair 1, 2nd € C such that {1, 2"?} - p >40 and
a) Calculate the bounds T 5,.;_. and 7 5,z_1.* according to Egs.
28 and 27 respectively
b) If T 214 < 0 then C <= C\{2nd}
&) If T 515 > 0 then C < C\{1st}

Many alterations and modifications may be made by those
having ordinary skill in the art without departing from the
spirit and scope of the invention. Therefore, it must be under-
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stood that the illustrated embodiment has been set forth only
for the purposes of example and that it should not be taken as
limiting the invention as defined by the following invention
and its various embodiments.

Therefore, it must be understood that the illustrated
embodiment has been set forth only for the purposes of
example and that it should not be taken as limiting the inven-
tion as defined by the following claims. For example, not-
withstanding the fact that the elements of a claim are set forth
below in a certain combination, it must be expressly under-
stood that the invention includes other combinations of fewer,
more or different elements, which are disclosed in above even
when not initially claimed in such combinations. A teaching
that two elements are combined in a claimed combination is
further to be understood as also allowing for a claimed com-
bination in which the two elements are not combined with
each other, but may be used alone or combined in other
combinations. The excision of any disclosed element of the
invention is explicitly contemplated as within the scope of the
invention.

The words used in this specification to describe the inven-
tion and its various embodiments are to be understood not
only in the sense of their commonly defined meanings, but to
include by special definition in this specification structure,
material or acts beyond the scope of the commonly defined
meanings. Thus if an element can be understood in the context
of'this specification as including more than one meaning, then
its use in a claim must be understood as being generic to all
possible meanings supported by the specification and by the
word itself

The definitions of the words or elements of the following
claims are, therefore, defined in this specification to include
not only the combination of elements which are literally set
forth, but all equivalent structure, material or acts for per-
forming substantially the same function in substantially the
same way to obtain substantially the same result. In this sense
it is therefore contemplated that an equivalent substitution of
two or more elements may be made for any one of the ele-
ments in the claims below or that a single element may be
substituted for two or more elements in a claim. Although
elements may be described above as acting in certain combi-
nations and even initially claimed as such, it is to be expressly
understood that one or more elements from a claimed com-
bination can in some cases be excised from the combination
and that the claimed combination may be directed to a sub-
combination or variation of a sub-combination.

Insubstantial changes from the claimed subject matter as
viewed by a person with ordinary skill in the art, now known
or later devised, are expressly contemplated as being equiva-
lently within the scope of the claims. Therefore, obvious
substitutions now or later known to one with ordinary skill in
the art are defined to be within the scope of the defined
elements.

The claims are thus to be understood to include what is
specifically illustrated and described above, what is concep-
tually equivalent, what can be obviously substituted and also
what essentially incorporates the essential idea of the inven-
tion.

The invention claimed is:

1. A computerized method for detecting by a processor a
change point in a data stream stored in memory by testing
whether two sets of samples from the data stream were
derived from the same distribution, wherein the test uses the
unique convergence properties of the two sample tests to
probabilistically find the point which maximizes their value,
said point closely approximating the change point, said test
comprising the steps of:
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(1) maintaining a list of candidate change points in the data
stream, and relevant aggregate information;

(i1) adding each new point in the data stream as candidate;

(ii1) computing an upper bound and a lower bound on the
long term value of the two-sample test for every candi-
date in the list;

(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound
values of other candidates, with high probability; and

(v) indicating a change point when one candidate exceeds
a given threshold.

2. The method according to claim 1, wherein the two-

sample test used is the %> two-sample test.

3. The method according to claim 1, wherein the relevant
aggregate information comprises the number of points, num-
ber of occurrence of data from different categories or other
statistics which can be incrementally updated with every new
sample.

4. The method according to claim 1, wherein the test used
is the mean estimation algorithm.

5. The method according to claim 4, comprising the steps
of:

(1) maintaining the sum of the data and number of samples;

(i1) updating the said sum and number with every new data;

(ii1) removing from said sum and number the sum and
number of the data in the first set of the data for the
candidate which indicates a change;

(iv) using the current sum and number to compute the
average which is the estimation for the mean; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold.

6. The method according to claim 1, wherein the test used

is any two-sample test.

7. A computerized method for detecting by a processor a
change point in a data stream stored in memory by testing
whether two sets of samples from the data stream were
derived from the same distribution, wherein the test uses the
unique convergence properties of the two sample tests to
probabilistically find the point which maximizes their value,
said point closely approximating the change point, said test
comprising the steps of:

(1) maintaining a list of candidate change points in the data

stream, and relevant aggregate information;

(i1) adding each new point in the data stream as candidate;

(ii1) computing an upper bound and a lower bound on the
long term value of the Student’s-t two-sample test for
every candidate in the list;

(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound
values of other candidates, with high probability; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold.

8. The method according to claim 7, wherein the aggregate
relevant information comprises the number of point, sum of
data, sum of the square of the data or other statistics which can
be incrementally updated with every new sample.

9. A non-transitory computer-usable medium having com-
puter readable instructions stored thereon for execution by a
processor to perform a computerized method for detecting a
change point in a data stream by testing whether two sets of
samples from the data stream were derived from the same
distribution, wherein the test uses the unique convergence
properties of the two sample tests to probabilistically find the
point which maximizes their value, said point closely
approximating the change point, comprising the steps of:

(1) maintaining a list of candidate change points in the data

stream, and relevant aggregate information;
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(ii) adding each new point in the data stream as candidate;

(iii) computing an upper bound and a lower bound on the
long term value of the two-sample test for every candi-
date in the list;

(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound
values of other candidates, with high probability; and

(v) indicating a change point when one candidate exceeds
a given threshold.

10. The medium according to claim 9, wherein the test used

is the % two-sample test.

11. The medium according to claim 9, wherein the relevant
aggregate information comprises the number of point, num-
ber of occurrence of data from different categories or other
statistics which can be incrementally updated with every new
sample.

12. The medium according to claim 9, wherein the test used
is the Student’s t-test.

13. The medium according to claim 12, comprising the
steps of:

(1) maintaining a list of candidate change points in the data

stream, and relevant aggregate information;

(ii) adding each new point in the data stream as candidate;

(iii) computing an upper bound and a lower bound on the
long term value of the Student’s-t two-sample test for
every candidate in the list;
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(iv) purging from the list candidates whose long term upper
bound value is lower than the long term lower bound
values of other candidates, with high probability; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold,

wherein the relevant aggregate information comprises the
number of point, sum of data, sum of the square of the
data or other statistics which can be incrementally
updated with every new sample.

14. The medium according to claim 9, wherein the test used

is the mean estimation algorithm.

15. The medium according to claim 14, comprising the

steps of:

(1) maintaining the sum of the data and number of samples;

(i1) updating the said sum and number with every new data;

(ii1) removing from said sum and number the sum and
number of the data in the first set of the data for the
candidate which indicates a change;

(iv) using the current sum and number to compute the
average which is the estimation for the mean; and

(v) indicating a change point when the test value for one
candidate exceeds a given threshold.

16. The medium according to claim 9, wherein the test used

is any two-sample test.
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